Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites

نویسندگان

  • Ashley C W Pike
  • Peter Rellos
  • Frank H Niesen
  • Andrew Turnbull
  • Antony W Oliver
  • Sirlester A Parker
  • Benjamin E Turk
  • Laurence H Pearl
  • Stefan Knapp
چکیده

Protein kinase autophosphorylation of activation segment residues is a common regulatory mechanism in phosphorylation-dependent signalling cascades. However, the molecular mechanisms that guarantee specific and efficient phosphorylation of these sites have not been elucidated. Here, we report on three novel and diverse protein kinase structures that reveal an exchanged activation segment conformation. This dimeric arrangement results in an active kinase conformation in trans, with activation segment phosphorylation sites in close proximity to the active site of the interacting protomer. Analytical ultracentrifugation and chemical cross-linking confirmed the presence of dimers in solution. Consensus substrate sequences for each kinase showed that the identified activation segment autophosphorylation sites are non-consensus substrate sites. Based on the presented structural and functional data, a model for specific activation segment phosphorylation at non-consensus substrate sites is proposed that is likely to be common to other kinases from diverse subfamilies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanistic Link between PKR Dimerization, Autophosphorylation, and eIF2α Substrate Recognition

The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its regulatory domains and map the mutations ...

متن کامل

Binding of double-stranded RNA to protein kinase PKR is required for dimerization and promotes critical autophosphorylation events in the activation loop.

Protein kinase PKR is activated by double-stranded RNA (dsRNA) and phosphorylates translation initiation factor 2alpha to inhibit protein synthesis in virus-infected mammalian cells. PKR contains two dsRNA binding motifs (DRBMs I and II) required for activation by dsRNA. There is strong evidence that PKR activation requires dimerization, but the role of dsRNA in dimer formation is controversial...

متن کامل

IRAK4 dimerization and trans-autophosphorylation are induced by Myddosome assembly.

Trans-autophosphorylation is among the most prevalent means of protein kinase activation, yet its molecular basis is poorly defined. In Toll-like receptor and interleukin-1 receptor signaling pathways, the kinase IRAK4 is recruited to the membrane-proximal adaptor MyD88 through death domain (DD) interactions, forming the oligomeric Myddosome and mediating NF-κB activation. Here we show that unp...

متن کامل

Allosteric Activation of Functionally Asymmetric RAF Kinase Dimers

Although RAF kinases are critical for controlling cell growth, their mechanism of activation is incompletely understood. Recently, dimerization was shown to be important for activation. Here we show that the dimer is functionally asymmetric with one kinase functioning as an activator to stimulate activity of the partner, receiver kinase. The activator kinase did not require kinase activity but ...

متن کامل

Autoinhibition and autoactivation of the DNA replication checkpoint kinase Cds1.

Cds1 is the ortholog of Chk2 and the major effector of the DNA replication checkpoint in Schizosaccharomyces pombe. Previous studies have shown that Cds1 is activated by a two-stage mechanism. In the priming stage, the sensor kinase Rad3 and the mediator Mrc1 function to phosphorylate a threonine residue, Thr(11), in the SQ/TQ domain of Cds1. In the autoactivation stage, primed Cds1 molecules d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO Journal

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2008